Physics Can Be Spooky!

spooky physics

 

Sometimes
real science can be just plain weird or even genuinely spooky.

Take the
phenomenon of quantum entanglement. Albert Einstein famously derided it as “spooky action at a
distance
” or “spukhafte
Fernwirkung” in his original German.

So, what’s it all about?


A quantum is a ‘package’, and
is a way of looking at, for instance, electromagnetic radiation, which can be
viewed as acting with the characteristic of both
waves and particles, for example a photon (that transmits light
and carries the electromagnetic force).

Sometimes, when quanta interact with one another, they
can form their own entangled system. Thus, when a pair or group of particles can no longer be said to be
acting as a group of systems but can only be described in terms of a single system,
the particles are said to be ‘entangled’.

An example of entanglement occurs when a subatomic particle decays into a pair of further particles. These decay events obey the various conservation laws; as a result, the measurement outcomes of one daughter particle must be
highly correlated with the measurement outcomes of the other (so that total
momenta, angular momenta, energy, etc remain roughly the same before and after
this process).

Why is this important? Because there are a number of
practical applications, especially in the IT area. Scientists are hoping quantum
computing
will enable us to build faster and more powerful
computers.

And, if we can eventually make quantum computing work,
how about quantum commuting? What’s the likelihood that we can beam ourselves
into work and miss the traffic queues? Well, don’t hold your breath; however,
so-called quantum teleportation may yet prove to be a useful, secure way to
transmit encrypted information. 

In 2012, the journal Nature published work by scientists
at the Institute for Quantum Optics and Quantum Information in Vienna. The team
succeeded in ‘teleporting’ photons 89 miles between the two Canary
Islands of La Palma and Tenerife. Later that year, Nature also published a Chinese team's work, which involved ‘teleporting’
photons 60 miles away.

Obsessed-With-Star-Trek-Trivia-BookQuantum teleportation is not actually what we see going on in Star Trek. Really, it’s a form of communication, the process by
which quantum information (eg the exact state of a particle) can be transmitted
from one location to another. Because it also depends on classical communication,
which can never work faster than light speed, it can’t be used for superluminal transport or communication.

There has been heated debate amongst the scientific
community about quantum entanglement and whether some ‘classical’ (ie
non-quantum mechanical) physical mechanism could eventually explain
entanglement. The original research was initiated by a 1935
paper from Albert
Einstein
, Boris Podolsky and Nathan Rosen describing their EPR paradox (Einstein, Podolsky, Rosen) followed shortly afterwards by several papers from Erwin Schrödinger.

Although these renowned scientists were skeptical of
certain counterintuitive properties of entanglement, many years later John Bell showed
with his theorem that we can tell whether ‘spooky action at a distance’ is real
or not. Eventually entanglement was verified experimentally using Bell’s
theorem and recognized as a valid, fundamental feature of quantum mechanics. Nevertheless, the debate continues today.

Heisenberg's
uncertainty principle

This tells us we can never predict the momentum of a particle exactly,
or even the total momentum of two entangled particles. Thus, we can't ever know
exactly what the momentum of a particle will be before we measure it, but we do
know that the total momentum of the two particles put together doesn't change
when the particles act on each other (conservation of momentum).


Schrodinger-s-Cat-Magnet-Finger-PuppetDead cat bounce

Austrian physicist Erwin Schrödinger
conducted his famous thought experiment in 1935.

Known as ‘Schrödinger’s cat’, this
hypothetical experiment places a cat in a sealed box along with a radioactive
source, a Geiger counter and a bottle of poison. Under the rules of this
experiment, if the Geiger counter detects radiation, it triggers a mechanism that
smashes the bottle of poison so the cat would die.

Thus, over a period of an hour, say,
there is a certain statistical probability that the source will have released
some radiation – goodbye cat! However, there’s also a probability that it won’t
have. Thus, the only way to know whether the cat remains alive at the end of
the experiment is to open the box and check it.

Schrödinger designed the experiment to
illustrate flaws in the so-called ‘Copenhagen interpretation’ of quantum
mechanics. This states that a particle exists in all states at once until
observed; similarly, therefore, as long as the
box remains closed, the cat is deemed to be simultaneously both dead and alive. Common sense clearly
indicates that the cat cannot be both dead and alive (regardless of whether it
is being observed) illustrating the problems of interpreting quantum physics in classical terms.

In Schrödinger’s own words, his thinking
“prevents us from naively accepting as valid a ‘blurred model’ for representing
reality.”

Leave a Reply

Your email address will not be published. Required fields are marked *